Modeling the Motion of a Projectile

Modeling the Motion of a Projectile

Purpose

In this lab you are going to analyze in groups various scenarios of the movement of a projectile using
Spreadsheets. The goal of this assignment is to understand how to use Spreadsheets to model physical
behavior and to read graphs and explain what insight it provides in the movement. You will understand how
varying the conditions affected the motion of projectile. Many careers in STEM use computational modeling
techniques to develop their designs, this lab is designed to introduce these skills.

Task
• Read through the procedure and watch the videos. Meet with your group and discuss what questions
or interests you have. Figure out what object you are interested in modeling their behavior and the
importance for the modeling of the behavior
• Assign tasks to group members or decide to work together on each step.
• Code the spreadsheet and analyze the behavior. Check to see if there are errors in the analysis, does it
make logical sense? If it appears wrong, double check. Hint: choose variables that will stay consistent
throughout the study for proper comparison like initial position.
• Write the report. Every group member reads the report to edit before submission.

PROCEDURE

A video has been made to show how to use a spreadsheet to model projectile motion. Your goal is to analyze
different conditions and the result. Your group will write a report explaining the results you have found with
graphs that are labeled. This project may take some time as you do it. If you wish to use a different
programing software or language like Matlab (or Octave), python, C++ etc, you may do so but graphs and the
file you used to analyze the motion are required to be submitted. (I have a basic understanding of many of
these codes to be able to get the jist of what you are doing.)

STEPS

Keep the height the same in all these steps in order to compare the information. Choose a spherical object like
a basketball, baseball, etc.
First step: Model a projectile motion with an initial velocity in the horizontal direction.
Second step: Model a projectile motion with a different initial velocity in the horizontal direction. What
changed?
Third step: Model a projectile motion with an initial velocity at varying angles. (Example: 15, 30, 45, 60, 75
degrees) Notice what changed. What happened to the motion of the ball?
Fourth step: What happens if there is a constant force due to wind? In the opposite direction of gravity or
same direction of gravity? Now only in the x direction either against or with the motion? (Remember Newton’s
Second Law!)
Fifth step: What happens if the object is a different size? Or has a different mass?
Sixth step: What happens if there is a drag force? (This is a more complicated step as drag force is dependent
of velocity of the object with is changing.) Assume the drag coefficient is 0.5 (for sphere shape object). Do you
only have the drag force in one direction or both? Does changing the fluid impact the motion (ignore
buoyancy)?

Report Requirements

In the report you will hand in, you will need to:

One write-up per group.
o Should only receive two files:
▪ The write up in a .doc/.docx or .pdf file
▪ Your code or spreadsheet with your work.
• Explain the setup for your study. Are you particularly interested in something (like a movement of a
baseball flying in the air?)
• Explain what happens each time you varied a parameter, is it what you expect?
• Complete every step. Have a graph for every step, discuss how the parameter changed the outcome.
(you can have a comparison graph instead of one graph per change)
o In the third step try all the angles and see what happens to time and range.
o In the fourth->sixth steps, explore how changing the object affects the previous steps and how
adding a force affects the motion. (Constant force in step 4 and Drag force in step 6. Did the
object hit terminal velocity before it hit the ground? Drag force is more complicated and takes
more time to analyze.)
o Each study will be discussed with graphs to explain the motion: position vs time, x vs y, velocity
vs time, etc. Choose a couple at which to look. Overlay graphs from various steps to make
easier comparisons. (Hint when making comparisons, only have one variable be different, for
example: If changing initial velocity then make sure angle and initial position are the same.
Unless you are doing a gradual change comparison for example: v=10m/s horizontally, v=20m/s
horizontally, and v=20m/s at 60o all on one graph.)
• Graphs that are labeled and demonstrate what you have studied. Choose which one (or ones) best
describes what you are trying to compare and study. (Do not use velocity vs time for one step and then
jump to position vs time for another step.) What aspect of the motion is changing when you change a
parameter, and do you see it?
Types of graphs.
o Position vs time
o X vs Y
o Velocity vs time
o Overlay graphs from multiple steps example: Step 1 (horizontal only velocity) and Step
2(different horizontal velocity) or compare Step 1 with Step 3 with all the angles on one graph,
etc.
o Overlay graphs of different values in one step/change example , ay,vy,y vs time
o A 3-D graph if it is interesting example x,y,t graph

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more